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The advent  of  supe rcompu te r s  has led to great  advances  in e lec t ronic  s tructure 
ca lcu la t ions  and  to the ab initio ca lcu la t ion  of  mo lecu la r  spectra.  Recent  

theore t ica l  deve lopmen t s  have a l lowed us to deve lop  a two-s tep  var ia t iona l  
a lgor i thm for the ca lcu la t ion  of  ro ta t iona l ly  h ighly  exci ted  states o f  f loppy 
molecules .  This a lgor i thm al lows highly  accura te  nuc lea r  mot ion  ca lcula t ions  
to be p e r f o r m e d  on low-lying ro -v ibra t iona l  states and  great ly  extends  the 
range o f  states that  can p rac t i cab ly  be cons idered .  The a lgor i thm has been  
a d a p t e d  to run efficiently on the Cray  supercompute r s .  Analys is  o f  the t imings 
suggest  that  cons t ruc t ion  o f  the secular  mat r ix  is h ighly  vec tor i sed  and  that  
the specia l  s t ructure  o f  secular  matr ix  can be used  to give r ap id  d iagona l i sa t ion .  
The l imi t ing facI:or on these ca lcula t ions  is the avai lab le  fast s torage,  but  
analys is  suggests that  this bo t t l eneck  could  be r emoved  by  use .of  a Sol id  State 
Device  (SSD).  Sample  results  are given for ca lcula t ions  involving a range o f  
ro ta t iona l  exci ta t ion.  An  adap t a t i on  o f  the a lgor i thm to a loop  o f  para l le l  
p rocessors  is also suggested.  
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D iagona l i s a t i on  

1. Introduction 

The impac t  of  supe rcompu te r s  on mo lecu la r  s t ructure  ca lcula t ions  has been  a 
p r o f o u n d  one and  is; d i rec t ly  d iscussed  in o ther  cont r ibu t ions  here.  Since their  

* This paper was presented at the International Conference on 'The Impact of Supercomputers on 
Chemistry', held at the University of London, London, UK, 13-16 April 1987 
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advent it has become possible to calculate in a reasonable time highly accurate 
electronic energies for sufficient nuclear geometries to enable the construction of 
high-quality, non-empirical potential energy surfaces for molecules with three or 
four nuclei and up to ten electrons. Such surfaces make feasible completely 
non-empirical calculations of  molecular rotation-vibration spectra, at least within 
the Born-Oppenheimer  approximation,  where previously only semi-empirical 
work was possible. This article is directed to a consideration of a scheme for 
such calculations on the Cray range of supercomputers.  The emphasis of the 
article is therefore less on new results than on computational techniques. 

The calculational scheme presented here arose from a perception that the tradi- 
tional approach to the problem of rotation-vibration spectra, based on the concept 
of an equilibrium geometry and near-harmonic vibrations, was likely to be 
inapplicable to the description of systems in highly excited states performing 
large amplitude vibrations. Such systems are now experimentally accessible 
through developments in high resolution laser spectroscopy. It will be shown 
that the method we use is capable of achieving, at least for H;- and its isotopomers, 
an accuracy competitive with that achieved by experiment [1, 2]. The magnitude 
of this achievement is perhaps best appreciated if it is remembered that one is 
discussing errors in observed ro-vibrational transitions which are six or more 
orders of  magnitude less in energy than the dissociation energy of the molecule. 
This achievement would not have been possible without access to supercomputers.  

The success of  these techniques has naturally led to questions about regions of  
the molecular spectrum as yet not directly sampled by laser spectroscopy. Here 
accurate calculations are the only possible means of obtaining information. 
Studies in this area have concentrated on the highly excited states of triatomic 
species [3-7] and, more recently, on highly rotationally excited states [8, 9]. It 
is from calculations in the latter problem area that the examples presented here 

will be chosen. 

The theoretical background to the approach used is described in two recent 
papers [8, 10]. It will simply be summarised to provide the context in which the 
computational scheme can be understood and the meaning of the results 

appreciated. 

2. Theory 

Unlike electronic structure calculations where the Hamiltonian of the problem 
is well defined, a variety of Hamiltonians and consequent solution techniques 
are available for the nuclear motion problem. This is because of the need to 
separate the continuous spectrum due to the translational motion of the system 
and the desirability of identifying vibrational and rotational coordinates. 

Sutcliffe and Tennyson [10] recently derived a Hamiltonian for the nuclear motion 
of a triatomic in a generalised coordinate system. These coordinates are the 
distance between atoms 2 and 3, rl; the distance, r2, from an arbitrary point on 
rl to atom 1, and the angle, 0, between rl and r2. The Hamiltonian is to be used 
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in linear variational calculations where the variational basis consists of products 
of functions of the internal coordinates and standard rotation functions I J, M, k) 
[10-12]. The purely rotational part of this basis can be integrated out to leave a 
Hamiltonian which acts upon the functions of the internal coordinates (rl,  r2, 0). 
This can be written: 

a~__ c),/'(l) -4- c}u _t_ o/,/'(1) -I- 0//'(2) 0 ) ( 1 ) 
- ~ v - ~ v - ~ V R  - -  ~ V R  + V ( r l ,  r2, 

with 

,y{'~) = - - ~ k , k - ~  [ 1 {Or20~- ~ 1 0 s i n 0 0  ) 
- ~  \Or, 10rl s i n ~ 0 0  0-0 

1 (~r: I 2 0 1 0 0 0 ) ]  + ~  - -  - -  sin (2) 
/.,2r2 r2 Or2 + sin 0 00 

cos0(• 0~ :7((v 2~ = 6 k ' k - -  --COS 0 + sin 
1(-612 Or~Or2 r~r2 ,,sin 0 00 

1)01 
\rlOr2 r2Or, r~r2 ~ (3) 

= co ec  0 1 2 ~176 
[. 2/Zl r2 2 tz~r 2 tz2 r2 id,12rlr2/ 

+6k,k• q:O+ko0 cotO (4) 

z/z12rlr2 ~ k c o t 0  + r20~q:kor2 s in0 (5) 

The effective Hamiltonian (1) is diagonal in the total angular momentum J and 
independent of its projection onto the laboratory z axis, M. The kronecker deltas 
show the coupling with in the (2J + 1) dimensional rotational manifold with the 
projection of J onto the body-fixed z axis, k = - J ,  - J  + 1 , . . .  0 . . . ,  J -  1, J. The 
form given above is appropriate for the body-fixed z-axis embedded along rl. 
The embedding along r2 is obtained simply by making the exchanges rl<-+ r2 and 
/xl <-+ Ix2. The coefficients Cs~ are the usual step up and down coefficients 

Csk = (J (J+ 1) - k ( k •  1)) 1/2 (6) 

and the reduced mas;ses are given by 

p, 71 = m 2 1 +  m31 

~121 =g( m21+  -1 -1 - m~ ) -  m3 (7)  

Iz21 = mTl + g2 m~ l +(l_g)2rn31 

with 

g = ( r , -  v) /r  1 (8) 

where v is the distance from atom 2 to the point at which r2 cuts r~. It should 
be noted that if the origin of r2 is chosen at the centre of diatomic mass then 
g = m2/(m2+ m3) a n d / , 1  vanishes; the resulting internal coordinates are usually 
called scattering coordinates. 
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If  one uses Hamiltonian (1) directly to perform fully coupled ro-vibrational 
calculations, the secular matrix rapidly becomes intractable with increasing total 
angular momentum, J, since every function of the internal coordinates must in 
principle be associated with 2 J +  1 rotational functions. Actually in the problems 
considered this increase is not quite so fast as symmetry can be used to give 
separate problems of dimension J + p  with p = 0  and 1. The parity of these 
problems is given by ( -1 )  j+p. Even so the rapid increase with J has limited 
calculations of this type to J values of 4 or less. However, for many systems, the 
projection of J along the body-fixed z-axis, k, is nearly conserved. In this case 
it is possible to obtain approximate solutions of (1) by neglecting terms off- 
diagonal in k, the so-called off-diagonal Coriolis interactions, and solving the 
Hamiltonian: 

_ ~..(1)~_ ~, . (2) .  (1) V(rl, O) (9)  Ygk - ~'~ v - ~ v - ~k'k~{VR + r2, 

where ~'k'k~ ~ V,-(1)VR signifies the first term in (4). Solutions of the full problem can 
then be obtained by expanding the wavefunction in terms of solutions of 
Y(k. This method leads to considerable savings because firstly not all the solu- 
tions of Ygk are required to converge the low-lying states of the problem and 
secondly the resulting secular matrix has a sparse structure which can be utilised 
computationally. 

The linear variational solution with eigenvalue ek.i to the problem specified by 
~k can be written 

Ik, i )= 2 Jk, i , c;m,. j, k)lm)ln)lJ, M ,  k)  (10) 
j,m,n 

where ]j, k) is an associated Legendre polynomial and carries the 0 coordinate; 
I m) and In) are radial basis functions carrying the rl and r2 coordinates respectively 
and I J, M, k) is included formally to emphasise that in the present approach the 
base energies are J dependent. In terms of the functions (10), the matrix elements 
of the full Hamiltonian (1) are 

(k ' ,  i']~lk, i } =  6k, k'~,.i'ek, i+~k•  i 'lx~A + ~(~)~ w ,It'~, i). (11) 

The off-diagonal matrix elements over the Coriolis operators (the second term 
in (11)) can be evaluated using matrix elements of the original basis functions. 
In turn these matrix elements are evaluated analytically or using Gaussian 
quadrature. For further details on this and other aspects of the theory the reader 
is referred to [8, 10, 11]. The whole procedure is available as a program suite [12]. 

3. C o m p u t a t i o n a l  c o n s i d e r a t i o n s  

The first step in the two-step variational ro-vibrational calculation is the solution 
of a series of secular problem specified by the Hamiltonian (9). This is technically 
the same process as solving a pure, J =  0, vibrational problem. Very efficient 
algorithms for obtaining such solutions have been developed [7, 11, 13]. In the 
present case the centrifugal distortion terms arising from the first part of ~(1) " ~  V R  

effectively modify the pure potential so that it depends on J and k. In the present 
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case one needs to solve a vibrational problem for each modified potential. For 
a given J, J + 1 such vibrational calculations need to be solved as ~k only contains 
terms in k 2. 

The solution of the vibration-like problem divides into two stages, the construction 
and then the diagonalisation of the secular matrix. Experience has shown that 
if sufficient care is taken with the selection and implementation of numerical 
integration procedures, it is usually possible to construct the secular matrix 
quicker than one can diagonalise it. How this is done in practice depends on the 
exact nature of  the coordinate system and basis functions used. References 
[11, 13, 15] give details for particular implementations. 

Typically, for a pure 'vibrational calculation the diagonalisation involves obtaining 
about the 20 lowest eigenvalues and eigenvectors from a matrix of dimension 
several hundred. The matrix may be neither sparse nor diagonally dominant. 
Efficient, vectorised routines are available for this problem [14]. We note that if 
these eigenvectors are to form the basis for a second variational step, then many 
more, up to half [2], of them may be required. In this case it may be more efficient 
to use an algorithm which yields all the eigenvectors of  a given matrix. 

Sample timings with an earlier version of our code, ATOMDIAT2 [16], have 
demonstrated that a speed-up by a factor of  about 15 is possible between scalar 
and vector versions of  the code on a Cray-lS. To obtain these savings it was 
necessary to use a w~ctorised diagonaliser and hence store the secular matrix in 
full rather than lower triangular form. It was also necessary to restructure the 
secular matrix construction step which otherwise became rate-determining [ 11]. 

Although the second variational step can also be thought of as consisting of the 
two stages, construction and diagonalisation of the secular matrix, the computa- 
tional considerations involved are rather different. The matrix elements of the 
second secular problem involve only one-dimensional quadrature. Actually these 
matrix elements are composed of integrals already calculated in the first step and 
so only transformations are involved in their construction. The resulting secular 
matrix has a characteristic structure which is sparse and special techniques can 
be used to handle it. 

In this case, the secular matrix can be stored as a vector of diagonal elements 
containing the e~.k and a rectangular matrix of off-diagonal elements O. I f  the N 
lowest eigenfunctions of  Wk are used for each k, then O k contains the N 2 
dimensional block linking Ik, i) and Ik+ 1, i'). There are J - p  such blocks. The 
storage requirement is thus approximately a factor J less than that of  the entire 
matrix [2, 11]. 

If  the calculation is performed in scattering coordinates, g = m2/(m2+ m3), with 
z embedded along r2 then ~,~(2~ vanishes and ~ vR ~ VR ~(~) simplifies sO that 

O k + xz~ + , ~ J.k,i Zk+W'  (12) ~.,,= C~.kj.m,.2 ;.-,',~ Cj, k~j,;~m,m'(n I 2~2r~ In) • Cj . . . .  Cj . . . .  , 
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In (12) the outer sums run over the basis functions of  the first step. In a 
computational  implementation the loops over i and i', the N solutions of Nk 
and Nk+] respectively, are placed innermost as this gives a vectorisable structure. 
Although the results presented here concentrate on calculations performed in 
scattering coordinates, it is worth noting that other coordinate systems, for which 
y{-(2~ is not a null operator, lead to more complicated forms of Eq. (12). In VR 
particular extra loops are introduced as non-zero matrix elements off-diagonal 
in both j, m and n must be incorporated. Computat ionally this may lead to a 
balance between coordinates which are the most physical for a particular system 
and those for which the most efficient calculations can be performed. 

Figures 1 and 2 show the time taken to construct the secular matrix as a function 
of N. These timings show a very nearly linear increase with N despite the fact 
that from (12) it is apparent  that this process depends o n  N 2 scalar operations. 
The figures also show the time taken to diagonalise the secular matrices. The 
timings are for obtaining the 20 lowest eigenvalues, to a tolerance of 0.01 cm -~, 
and corresponding eigenvectors. The secular matrices are of  dimension S =  
( J +  1 - p )  * N;  the largest considered in the figures is of dimension 8400. For 
the smaller problems considered the diagonalisation time is very similar to the 
matrix construction time. For the larger problems diagonalisation time displays 
an N 3 behaviour typical of  diagonalisation and thus begins to dominate. However, 
the CPU time used is still small for the size of  matrices under consideration. To 
achieve this it was necessary to use a diagonalisation procedure specifically 
adapted to the Cray architecture. This will be discussed below. 
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Fig. 1. CPU time usage as a function 
of N for the second step of a ro- 
vibrational calculation on Ha D+ with 
J = 20 (p = 0 para). All calculations 
obtained the lowest 20 levels. The 
timings are divided into matrix 
construction (triangles) and 
diagonalisation (squares). Total 
times are given by the circles. Open 
symbols are for the Cray-IS/COS2M 
machine at the University of London 
Computer Centre and dosed symbols 
for the Cray-XMP 480 at the Atlas 
Computing Centre. For comparison, 
it took 296s to solve the first step 
with N = 100 on the Cray-lS and 
341s to obtain all 1592 solutions of 
the first step on the Cray-XMP 



The use of supercomputers for variational calculation 271 

We have already noted that the secular matrix for the final step of our two- 
step procedure has a special structure. In order to utilise this structure it is 
necessary to use an algorithm based on iterative diagonalisation. This not only 
minimises the storage, but comparisons [8] with diagonalisers designed for 
symmetric [14] and banded [17] matrices have shown that iterative 
diagonalisation [18, 19] can also be made faster. 

The step characteristic ofiterative diagonalisers is the multiplication of the secular 
matrix by an image vector z: 

s 

w, = E S~zj  (13) 
j = l  

The special structure o f / - /  means that this operation can be written: 

N 
wk, i = ek, iza~+ Z (O~i,zk+, ~ , + 0  k ' , , i',, zk  , , i ')  ( 1 4 )  

i'=1 

where the symmetry of H has been used implicitly by transposing O k ~ in the 
second product. Computation of w is thus reduced from S vector-matrix multipli- 
cations of dimension S to a dot product of dimension S and 2(J - p )  vector-matrix 
multiplications of dimension N. For the vector-matrix multiplications we have 
employed a routine specifically designed for Cray computers [20]. One property 
of this routine is that it skips the vector-matrix multiplication for zero elements 
of the vector. 

Fig. 2. Cray-IS/COS2M CPU time usage as 

a function of N for the second step of a 

ro-vibrational calculation on H2 D+ with J = 

30 (p = 0 para). All calculations obtained 
the lowest 20 levels. The timings are divided 
into matrix construction (V), 

diagonalisation ([]) and total (�9 times. 
For comparison it took 437s to obtain the 
solutions of the first step with N = 100 
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Fo r  many  systerrts, ones for  which  k is near ly  a g o o d  qua n tum number ,  the vectors  
have one d o m i n a n t  coefficient.  For  example  recent  ca lcu la t ions  on the A r - C O  
Van der  Waa l s  complex  with J = 1 - 2 0  have shown that  for  the great  major i ty  
o f  e igenvectors  one so lu t ion  o f  ~k  gives more  than  90% of  the wavefunc t ion  
[21]. This suggests tha t  uni t  vectors  p rov ide  a c o m p u t a t i o n a l l y  efficient s tar t ing 
po in t  for  the i terat ions.  I f  T e igenvalues  are  requi red ,  the T lowest  d iagona l  
e lements  are de t e rmined  p r io r  to d i agona l i s a t i on  and  ini t ial  guesses are genera ted  
as the co r r e spond ing  uni t  vectors.  At the same t ime the highest  d i agona l  e lement  
is also de te rmined .  The  d iagona l s  are then  shif ted so that  the h ighest  e lement  
takes the value  zero. This ensures that  only  the lowest  e igenvalues  are de t e rmined  
by  a p r o c e d u r e  des igned  to ob ta in  the T e igenvalues  with largest  abso lu te  value.  

Analys i s  o f  the d i agona l i s a t i on  t imes given in Figs. 1 and  2 show that  for  large 
N the increase  is roughly  p ropo r t i ona l  to N 3, but  that  this behav iou r  is far f rom 

monoton ic .  The key to this bumpines s  is the n u m b e r  o f  i te ra t ions  requ i red  to 
achieve convergence.  This number  is found  to rise a p p r o x i m a t e l y  l inear ly  with 
N, but  not  smoo th ly  so. The  cause o f  this bumpines s  remains  unclear .  Convergence  
can be affected by the choice  o f  s tar t ing vectors ,  bu t  these  are the same for 
different  N. Ano the r  poss ib le  exp lana t ion  is that  in cer ta in  cases there are 
acc iden ta l  nea r -degenerac ies  [18]. However ,  analysis  of  the  J = 2 0 ,  N = 2 0 0  
example  in Fig. 1, which  has  the most  a n o m a l o u s l y  long d i agona l i s a t i on  t ime,  
gives no evidence to suppo r t  this exp lana t ion .  I n d e e d  the J = 20, N = 250 case, 

which takes  less t ime to d iagona l i se  ac tua l ly  has two pairs  o f  levels much  closer  
than  any in the N = 200 case. When  the d i agona l i sa t ion  t ime is d iv ided  by the 
n u m b e r  o f  i tera t ions ,  it is found  that  the  t ime per  i te ra t ion  is p r o p o r t i o n a l  to N 2, 

as wou ld  be expec ted  f rom the s tructure o f  Eq. (14). 

Table 1. Comparison of CPU time usage (in seconds) and fast memory (in words) for obtaining the 
lowest 20 ro-vibrational levels of H2D + with J = 2 (p =0 para). All calculations yielded the same 
eigenvalues to within 0.02 cm 1 at most. The timings are divided into secular matrix construction 
(C) and diagonalisation (D) times. All calculations were based on program TRIATOM [12] with 
the lowest 600 k = 0 basis functions preselected on energy ordering grounds [2, 11]. Sma x gives the 
dimension of the largest secular matrix in each step of the calculation 

One-step calculation Two-step calculation 

Cray computer XMP 480 XMP480 XMP480 1S/COS1M 

First step 
Sma X 1 592 600 600 600 
Storage/words 2 715 613 536 189 536 189 717 533 
tc/s 2.25 2.15 2.15 4.07 
to/s 261.78 35.14 35.09 58.36 

Second step 
Smax 1 592 900 900 
Storage/words 1 268 878 544 570 546 370 
tc/s 145.78 23.04 81.50 
to/s 18.44 7.38 20.11 

Total time/s 264.03 201.51 67.66 164.04 
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A comparison that can be made from Fig. 1 and also Table 1 concerns the relative 
speed of the codes on the Cray- lS and Cray-XMP machines. For construction 
of the secular matrix in the second variational step, we find that the XMP is 
more than three times faster than the 1S machine. This is more than twice the 
speed-up one would expect simply from the clock speed and implies that addi- 
tional speed is being gained from vectorisation. For the diagonalisation step time 
savings are less and also more erratic, varying from about 1.2 to 3 times as fast. 
The net result is that for the larger runs considered the diagonalisation time 
dominates on the Cray-XMP. 

The memory requirement for the calculations presented in Figs. 1 and 2 increases 
linearly with J and quadratically with N. The requirement of the largest shown 
(J  = 20, N = 400) is approximately 4 Mwords. It is easy to envisage a situation 
where random access memory is a serious constraint on the size of  problem that 
can be considered. In this respect it should be noted that the algorithm implied 
by (14) only requires one block of O to be retained in random access memory 
at a time. This suggests that the procedure can be further adapted to systems 
such as the Cray XMP 480 newly installed at the Atlas Computing Centre which 
has a very fast input /output  link to a Solid State Storage Device. 

4. Sample results 

The advent of  super-computers has opened up a new era in the ab initio calculation 
of molecular vibration-rotation spectra. Such computers have made possible rapid 
and accurate calculation of electronic energies for systems with few electrons. 
In consequence, accurate potential energy surfaces for significant molecular 
systems are now available. For example the molecular ion H3 has excited much 
recent interest [22, 213]. 

Another consequence of these developments has made it possible to transcend 
the usual semi-rigid approximations used previously in vibration-rotation calcula- 
tions. This has opened up to theory previously inaccessible spectral regions of 
great experimental interest. Current work on the near-dissociation spectrum of 
H f  neatly illustrates that in some important cases it is no longer our ability to 
perform electronic structure calculations that needs to be improved, but our 
representation of bound state nuclear dynamics [24]. In this section we briefly 
illustrate the results which are obtainable with the procedures discussed above. 

Table 1 illustrates the computational requirements of  several calculations using 
the algorithms discussed above. The calculations are for a case of  low rotational 
excitation, J = 2, but clearly illustrate the savings of  using our two-step procedure 
for a calculation. The results presented are for highly converged calculations in 
which none of the corresponding eigenvalues differed from each other by more 
than 0.02 cm -~. In the first two calculations presented, the full 1592 dimensional 
secular matrix was diagonalised. In the first calculation this was done directly; 
in the second, two steps were used but all the intermediate functions were included 
in the final calculations. The results of these two procedures are identical within 
the tolerance of the iterative diagonaliser (here set at 0.01 cm-~). Clearly, the 
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two-step procedure is not only quicker, but requires less than half the storage of 
the one-step calculation. The third calculation shows that these savings are greatly 
increased if only the lowest 300 solutions of  Ygk are used in the second step. The 
final column reports the characteristics of  such a calculation on the Cray-lS. 
Note that the difference in core usage in the first step is due to the use of  different 
diagonalisers. 

Table 2 compares rotation-vibration levels for D2H + with J <-4. The comparison 
between the most recent theoretical predictions and experiment are excellent. 
The improvement  in the theoretical results over the previous ab initio estimates 
can be ascribed to two effects. Firstly the electronic potential used, due to Meyer 
et al. [22], which is the most accurate currently available. Secondly, the algorithms 
discussed above have greatly improved the accuracy of calculations on rotationally 
excited states. This is particularly true when these states are associated with 
simultaneous vibrational excitation. We note one advantage of theory over 
observation is that is allows a complete determination of all the levels, including 
those of bands which have yet to be characterised experimentally. Further details 
of these calculations, as well as fits to experimentally motivated model Hamil- 
tonians, can be found in Ref. [2]. 

Besides the more accurate first principles determination of low-lying rotational 
levels, our methods can also be used to study highly rotationally excited states. 
Of particular interest to us is the region in which the level spacing within a 
rotational manifold becomes comparable to a quantum of vibrational excitation. 
In this region one might expect our usual ideas on the separability of vibrational 
and rotational motion no longer to be valid. It is this problem with which we 
are particularly concerned at the moment.  Initial calculations were performed 
on H2 D+ [8] as the lightness and asymmetry of this system suggest that it will 
show an earlier overlap between neighbouring rotational manifolds than more 
conventional molecules. This was confirmed by our initial study. 

We are now engaged in a systematic study of the rotational levels of this system 
with J values up to 30, using an accurate ab initio potential energy surface [22]. 
This should encompass the region where vibrational excitations become of lower 
energy than "pure"  rotational excitation. It is in order to perform such calculations 
that the work reported here on the use of supercomputers and in particular Cray 
vector-processing machines has been performed. Without these machines such a 
study would not be feasible. We can thus say that the advent of  supercomputers 
is opening up areas of  ab initio molecular spectroscopy which have previously 
not been accessible. 

Finally we should mention that the procedures developed here are well suited 
to machines with a highly parallel architecture. It is possible to formulate the 
problem for a loop of J + p  parallel processors with little or no shared memory, 
but fairly large local memory.  Each processor would then be associated with a 
particular k value. It would: 

(a) construct and diagonalise one ~k; 
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(b) construct one block of O k, which involves sending c j'k to one neighbour and 
receiving c J'k+l from the other; 
(c) construct wk on each iteration of the diagonalisation, see (14), exchanging 
zk~l with its neighbours. 

Only construction of the initial matrix elements does not fall naturally into this 
scheme. This step typically takes only 3% of the total CPU time. 
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